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Abstract—Diffusion models have recently gained prominence as a powerful class of generative models capable of producing
high-quality images through an iterative denoising process. In this project, we explore their application in two key areas: image
generation and image restoration (inpainting and deconvolution). We first implement Denoising Diffusion Probabilistic Models (DDPMs)
to generate images from noise, leveraging a stepwise denoising approach. For image restoration, we employ diffusion models as priors
to solve inverse problems, comparing three different methods: SDEdit, a simple denoising-based approach; Score-ALD, which
incorporates an additional correction step; and DPS, which refines posterior sampling for improved perceptual quality.

Our results demonstrate that diffusion models not only achieve state-of-the-art generative performance but also achives high
performance in terms of both perceptual quality (LPIPS) and reconstruction accuracy (PSNR). Notably, DPS provides the most stable
and high-quality reconstructions, whereas Score-ALD exhibits saturation artifacts, and SDEdit struggles to maintain fidelity to the
ground truth. However, a key limitation is that these methods are highly dependent on the training dataset and may not generalize well
to varying image sizes or unseen data distributions. Additionally, while DPS produces superior results, its computational cost remains a

challenge for real-time applications.

Index Terms—Diffusion Model, DDPM, SDEdit, Score-ALD, DPS

1 INTRODUCTION

IFFUSION models have emerged as a powerful genera-
Dtive framework for synthesizing high-quality images
by iteratively denoising noisy inputs. Originally devel-
oped for image generation, these models have demonstrated
exceptional performance in various applications, including
image restoration tasks such as inpainting and deconvo-
lution. Unlike traditional approaches, which often rely on
explicit priors or handcrafted regularization, diffusion mod-
els learn to reverse the noise addition process through a
probabilistic framework, enabling them to serve as strong
generative priors for inverse problems.

This project explores two primary applications of diffu-
sion models. First, we use Denoising Diffusion Probabilis-
tic Models (DDPMs) [1] to generate high-quality images by
sampling from noise and iteratively refining them through a
learned denoising process. Second, we leverage pre-trained
diffusion models to recover missing or degraded image
information. Specifically, we implement and compare three
methods for inpainting and deconvolution: SDEdit [2], an
intuitive approach that refines noisy measurements through
guided denoising; extbfScore-ALD [3], a more rigorous
method that introduces an additional correction step; and
DPS [4], a state-of-the-art technique that enhances posterior
sampling to improve reconstruction fidelity.

Our goal is to analyze the effectiveness of diffusion
models in both generative and restorative tasks, evaluating
their performance using quantitative metrics such as Peak
Signal-to-Noise Ratio (PSNR) and Learned Perceptual
Image Patch Similarity (LPIPS), as well as qualitative
visual comparisons. Our findings show that diffusion mod-
els successfully generate high-quality images, with DDPMs
demonstrating strong fidelity in the reverse process. For im-
age restoration, DPS outperforms Score-ALD and SDEdit in
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terms of both perceptual and quantitative metrics, making
it the most reliable approach. However, a key limitation is
that diffusion models are trained on fixed-size images and
may not generalize well to varying resolutions or unseen
data distributions. Furthermore, while DPS provides high-
quality restoration, its computational cost remains a chal-
lenge.

2 RELATED WORK

Diffusion models have recently emerged as a powerful gen-
erative modeling framework, demonstrating state-of-the-art
performance in image synthesis, denoising, and inverse
problem-solving. Our work builds upon foundational re-
search in diffusion models, particularly in image generation
and restoration.

Denoising Diffusion Probabilistic Models (DDPMs)
were first introduced by Ho et al. (2020) [1] as an alternative
to traditional generative models like GANs and VAEs. Un-
like GANs, which suffer from mode collapse and training
instability, diffusion models iteratively refine images from
noise, producing high-diversity, high-fidelity outputs. Fur-
ther research has focused on improving sampling efficiency,
such as denoising diffusion implicit models (DDIMs) [5],
which reduce the number of steps required for high-quality
image generation.

Several notable works have explored diffusion mod-
els in image restoration. SDEdit [2] is a simple method
that refines noisy measurements through guided denoising.
However, its reliance on mid-generation guidance often
results in reconstructions that diverge from the original
image structure. Score-ALD [3] introduces an additional
correction step to improve reconstruction accuracy, but its
estimation step causes small instability. DPS [4] develops
a posterior sampling framework that integrates measure-
ment consistency, leading to state-of-the-art performance
in image restoration tasks.



3 PROPOSED METHOD

Our approach leverages Denoising Diffusion Probabilistic
Models (DDPMs) for both image generation and restora-
tion. The process consists of two steps:

1) Forward Noising Process: Gradually adds Gaussian
noise to an image, corrupting its structure.

2) Reverse Denoising Process: The model learns to
progressively remove noise, reconstructing the orig-
inal image from a noisy sample.
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Fig. 1: Illustration of the full diffusion process: the forward
step gradually adds noise, while the reverse step recon-
structs the image.

3.1 Denoising Diffusion Probabilistic Model (DDPM)

Denoising Diffusion Probabilistic Models (DDPMs) are a
class of generative models that iteratively denoise a Gaus-
sian noise sample to generate realistic images.

The diffusion model consists of a forward process
(adding noise) and a reverse process (denoising to recon-
struct the original image). We visualize these processes
using images with smaller, centered arrows positioned in
the middle of the images for better alignment.

3.1.1 Forward Process - Noising
The forward diffusion process is defined as:

q(@elzi—1) = N (5 Vouwi—1, (1 — o). @
Expanding recursively over multiple steps:
= o1+ V1 — g1, -1 ~N(0,I). (2)
By iterating this process:
we = Vauwo + V1 — aye,

where @; is the noise schedule. The model then denoises x;
back to an estimate ¢ using the learned score function.

e ~ N(0,1) 3)

3.1.2 Reverse Process - Denoising SDE

To reverse the diffusion process, we use a learned neural
network to predict the noise , defining the posterior:

po(zi—1|ze) = N(2p—1; po(xe, t), Bo (24, t)). 4)

We derive the mean function:
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This shows that noise prediction enables image recovery.

Finally, the DDPM algorithm performs iterative sam-

pling from a Gaussian distribution noise, refining each
step with a learned score function. Note that we will only

:u9(xta t) = 69(.1%, t)) . (5)
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explore the case for Variance Preserving (VP). The process is
formalized in the following algorithm:
DDPM Reverse Diffusion w/ Score Predictor

XT NN(O7I)
fort="T,...,1do
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end for
return xo

In this work, we leverage DDPMs for image generation
by applying the reverse diffusion process to random Gaus-
sian noise. The reverse function of DDPM progressively
refines the noise into a coherent image by iteratively denois-
ing through learned distributions, ultimately reconstructing
high-quality and realistic samples.

Beyond its generative capability, the reverse function of
DDPM can also be employed for image restoration. Instead
of starting from pure Gaussian noise, the process is initial-
ized with a degraded or “erroneous” image and refined
through iterative denoising. By conditioning the diffusion
process on corrupted inputs, DDPM can gradually recover
the underlying structure of the image while reducing noise,
artifacts, and missing details.

For image restoration, we implement three methods.
SDEdit [2] applies a forward diffusion step to add noise
to the input image before performing reverse diffusion to
generate a refined output. Score-ALD [3] introduces an ad-
ditional correction step to improve reconstruction accuracy
by iteratively aligning with measurement constraints. DPS
[4] enhances posterior sampling, ensuring higher perceptual
quality and improved fidelity to the original image.

3.2 SDEdit

SDEdit [2] operates by applying a two-step process con-
sisting of a forward diffusion step followed by a reverse
diffusion step. Unlike Score-ALD and DPS, which explicitly
take measurements to guide the diffusion process, SDEdit
first corrupts the input image by adding noise using the for-
ward diffusion process. Then, it applies the reverse diffusion
process to reconstruct an image that adheres to the provided
measurement data.

This method differs from traditional inverse problem-
solving approaches as it does not incorporate iterative sam-
pling or explicit likelihood optimization. Instead, it relies
solely on the learned generative prior of the diffusion model
to refine the corrupted image. While this approach allows
for simple image editing and controlled modification of
image content, it does not explicitly solve inverse problems
in the same way as Score-ALD and DPS. Consequently,
SDEdit often struggles with producing reconstructions that
closely resemble the ground truth, particularly when the
measurement data is significantly altered or sparse.



3.3 Score-ALD

Score-ALD [3] refines the denoising process by incorporat-
ing an additional correction step that ensures measurement
consistency. The update rule at step ¢ is given by:

Ty =Ty — V| |Azy — yl|? (6)
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where A is the degradation operator, y is the observation,
and o; controls the noise level at step ¢. This additional
gradient term enforces consistency between the estimated
reconstruction and the measurement.

3.4 DPS

DPS [4] further refines posterior sampling by enforcing data
fidelity more explicitly. The update step in DPS is:
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where (; is a step size parameter. This method effectively
balances diffusion-based denoising with data consistency,
leading to improved image reconstructions.

4 EXPERIMENTAL RESULTS

To evaluate the effectiveness of the proposed methods,
we conduct experiments on image generation and image
restoration tasks, focusing on inpainting and deconvolution.
We use Peak Signal-to-Noise Ratio (PSNR) and Learned
Perceptual Image Patch Similarity (LPIPS) as evaluation
metrics. PSNR measures reconstruction fidelity, with higher
values indicating better recovery of original images. LPIPS
assesses perceptual similarity, where lower values corre-
spond to images that are more visually similar to ground
truth.

4.1 Forward Process Reverse Process

As shown in Figure 2, it can be seen that as more noise
is added, the reconstruction quality doesn’t resemble the
original image. This is evident from the PSNR values, which
decrease as the timestep increases, and the LPIPS values,
which increase as the timestep increases.

4.2 Image Generation

To demonstrate the effectiveness of the diffusion model in
image generation, we visualize four generated samples ob-
tained from different noise initializations using the DDPM
sampling process. The diversity in these outputs highlights
the generative capacity of the model. Results can be seen
in Figure 3. It can be seen that for (256 x 256) size images,
the reverse process from the DDPM (variance preserving)
produces high-fidelity images from a complete noise image.
From this, it can be concluded that the diffusion model has
shown good results in image generation. Since there is no
ground truth to compare against, PSNR and LPIPS values
are not evaluated.

Original Image

Noised Images Denoised Images

N
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LPIPS: 0.07

timestep = 100
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PSNR: 26.67

timestep = 300
LPIPS: 0.16

PSNR: 18.87

timestep = 700
LPIPS: 0.52

Fig. 2: Illustration of the full diffusion process: the left
column shows noisy images at different timesteps, and
the right column presents their corresponding denoised
reconstructions with PSNR and LPIPS values. The original
image is placed above with a downward arrow indicating
the process.

4.3

To evaluate the effectiveness of different image restoration
methods in both inpainting and deconvolution, we present
qualitative results in structured tables. Each row corre-
sponds to a different method, while each column represents
different evaluation metrics, including qualitative images
and their corresponding PSNR and LPIPS values. Results
can be seen in Figure 4.

It can be seen that by using “erroneous”images (for this
experiment, images used for inpainting and deconvolution),
they can serve as measurements that guide the diffusion
model so that its gradient during training follows the mea-
surement. SDEdit operates differently from Score-ALD and
DPS in that it does not explicitly take measurements to
guide the diffusion process. Instead, it first applies a forward
diffusion step by adding noise to the input image and then

Inpainting and Deconvolution Results



Fig. 3: Generated images using DDPM sampling from dif-
ferent noise initializations. The diversity in samples demon-
strates the model’s generative capabilities.

performs a reverse diffusion step using the measurement
data as an initial condition. While this approach allows for
controlled modifications of image content, it does not iter-
atively refine the image based on measurement constraints
like Score-ALD and DPS.

As a result, the reconstructions produced by SDEdit tend
to diverge from the ground truth compared to Score-ALD
and DPS. Since the process is dependent on how much noise
is added during the forward diffusion step, SDEdit struggles
to fully restore missing information, particularly when the
measurement is significantly altered. Unlike Score-ALD and
DPS, which continuously refine their outputs through itera-
tive sampling, SDEdit applies a single-shot reverse diffusion
process, which may not always align with the underlying
structure of the original image.

One notable observation in SDEdit is that when less
noise is added during the forward diffusion step, the re-
constructed image appears more similar to the input. This
results in improved PSNR and LPIPS values but may retain
unwanted artifacts and noise. Conversely, when more noise
is added, the final image becomes more visually plausible
but deviates further from the original, leading to a lower
PSNR and higher LPIPS values.

Score-ALD and DPS resolve this issue by incorporating
iterative sampling, leading to improved PSNR and LPIPS
values compared to SDEdit. However, Score-ALD is an
approximation of the log-likelihood term introduced in the
update function, leading to a lower reconstruction quality
compared to the DPS method. Score-ALD also has higher
saturation compared to DPS, which produces great image
quality. This is because DPS directly utilizes the score func-
tion (gradient of the log-likelihood) of the diffusion model to
iteratively refine noisy data into a more plausible clean sam-
ple. Score-ALD, on the other hand, introduces adversarial
training in latent space, which can lead to instability during
training and inference. DPS avoids the need for adversarial
optimization, making it more stable and easier to train.
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It should be noted that DPS works for linear and nonlin-
ear inverse problems with Gaussian or Poisson noise, so it
can be expected that DPS performance would be good for
other images with Poisson noise.

5 DISCUSSION

The experimental results highlight the strengths and limi-
tations of different diffusion-based methods in image gen-
eration and restoration. The results from the forward and
reverse processes indicate that as noise is added, image
reconstruction becomes more challenging, as evidenced by
decreasing PSNR and increasing LPIPS values. This aligns
with the expectation that greater noise levels lead to signifi-
cant degradation of perceptual and structural information.

In terms of image generation, the diffusion model
demonstrates strong generative capabilities, producing
high-fidelity images from pure noise. The ability of the
model to generate diverse outputs from different noise
initializations underscores its effectiveness. However, since
there is no ground truth for generated images, traditional
quantitative metrics like PSNR and LPIPS are not applicable,
and subjective evaluation is necessary.

For image restoration, the comparison between SDEdit,
Score-ALD, and DPS reveals crucial differences in their
approaches and performance. SDEdit’s method of introduc-
ing measurements mid-way through the generation process
results in images that do not closely resemble the ground
truth. On the other hand, Score-ALD and DPS incorporate
measurements from the beginning, allowing for a more
controlled restoration process. The observed differences in
PSNR and LPIPS values confirm that DPS is the most stable
and effective method, as it avoids adversarial training and
iteratively refines the image while solving inverse problems
more effectively.

Despite the promising results, there are limitations to
consider. The generated and restored images are highly
dependent on the training data, limiting generalization to
images of different resolutions, structures, or domains out-
side the training set. Specifically, the methods work well for
the trained image sizes but may not generalize effectively to
larger or smaller resolutions. Furthermore, while DPS pro-
vides improved restoration quality, its computational cost is
higher due to iterative refinement. Additionally, adversarial-
based methods like Score-ALD introduce instability, making
them less reliable in certain cases. Lastly, while diffusion
models show great promise in image restoration, their re-
liance on iterative denoising makes real-time applications
challenging, necessitating future work on efficiency im-
provements.

6 CONCLUSION

The findings of this study demonstrate the potential of diffu-
sion models in both image generation and restoration tasks.
While the diffusion model effectively generates high-fidelity
images from pure noise, its application in restoration de-
pends on how the measurement constraints are integrated.
DPS emerges as the most reliable approach, outperforming
SDEdit and Score-ALD in terms of both stability and recon-
struction quality.



Measurement SDEdit (t=300) SDEdit (t=500)

SDEdit (t=800)

Score-ALD DPS

Fig. 4: Comparison of inpainting and deconvolution results. The first row represents inpainting, where degraded images
(leftmost column) are restored using various methods. The second row represents deconvolution, restoring blurred images
through different approaches. Each column showcases a different method: SDEdit at different noise levels (=300, 500, 800),

Score-ALD, and DPS.

Metric SDEdit (t=300) | SDEdit (t=500) | SDEdit (t=800) | Score-ALD | DPS
Inpainting PSNR 22.76 20.72 14.05 22.75 34.93
Inpainting LPIPS 0.14 0.18 0.32 0.12 0.02

Deconvolution PSNR 2445 22.34 13.32 22.49 28.36
Deconvolution LPIPS 0.21 0.20 0.37 0.14 0.07

Fig. 5: Comparison of inpainting and deconvolution results.

Future work could explore further refinements in
diffusion-based restoration techniques, especially in han-
dling different types of noise and extending these methods
to more complex image structures. Additionally, addressing
generalization issues by training models on diverse datasets
and varying image sizes could improve adaptability. Lastly,
optimizing the computational efficiency of diffusion-based
approaches will be crucial for real-time and large-scale
applications.
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EXTRA INFORMATION
Part 1: Forward Diffusion Process
Proposition 1: Given the forward diffusion process:

X =1-6:Xe-1 +VBiZi—1, Zi_1 ~N(0,1)

Prove that this can be rewritten as:
Xt =V O_lth —+ HZ

Proof: The forward diffusion process is defined as:

Xe =1 - B X1+ BiZi1,

where Z ~ N(0,1).
We define:

t=1,2,....,T (8)

t
ar=1-p;, a =[] )
i=1

Rewriting the equation recursively:

Xt :\/OTtthl“F\/]-_atthl, t= 1,2,...,T. (10)

Expanding further:

Xi = oy (\/Oét—lXt—2 +v1- Oét—1Zt—2> +V1—aZi

(11)
=ogo 1 X o+ V91— Zi + o (1 — 1) Zi—s.
(12)



Following the recursive pattern:

Xt = ooy 102Xy 3

+VI—aiZi g+ ol —ai1)Z; o

+ \/atat—l(l —q_2)Z;_3. (13)
Generalizing, we obtain:
H a; Xo + Z VI—a H Nen (14)
Jj=i+1
Since a; = []'_, «, this simplifies to:
X =vVaXo+V1—aZ (15)

Part 2: Equivalence of Two Reverse Diffusion Forms
Proposition 2: Prove that:

Xo = \/%(Xt + (1 — ay)do(Xy, 1))

is equivalent to:

thl = o (Xt + (1 — Oét)é@(Xt, t))
t
and:
o (1 — oy ar—1(1 —ay) 4
X, = t( f)ét 1)Xf,+ t 1( : t)Xo
1-— Qg 1-— Qi
Proof:

We start with the estimated clean sample:

1
Go= —— (X, +(1-a

o ¢)S0(X¢,t)) . (16)
Next, we define the expression for X;_1:
fon (1 —
X = O‘tl 1)y, 4 ¥ e i )530- (17)
—
Expanding Zo:
1—aqy_
Xy = Vol ae)
1-— Qi
(1 —
P VO 0 (4 (1 ay)sy(X,). (19)
O[t(]. — O[t)
Rewriting:
Vag(l — ,/ (1-
X, = Oét Q- 1 Oy 1 O/t) X,
1- Qi Oét(]. - Oét)
Vai_1(1 —
VO 9 gy ) (19)
Oét(l — Oét)
Since:
Qr = gOig—1, (20

we substitute:

Xi1 = (

L 4 _“t)sg(xt,t).

(1= ay_q) + (1 — at)> X,
Oét(l — O_[t)

21
Va @D
Simplifying further:
1-—- a (1 — at)
Xi1= — X; + So(Xi,t). (22)
Oét(]. — Oét) (673
Thus, we can express the function:
1 (1 — Oét)
Xi 1= X . 23
t—1 T + o (23)

Part 3: Equivalence of Reverse Diffusion and Algorithm
2 in DDPM

Proposition 3: Prove that:

1
Xi1 = \/TT(Xt + (1 — a)dp (Xt 1))
is equivalent to:
1 (1 — Oét) )
Xi 1= Xt — ——F€p( Xy, t
1 at< T ima o)

Proof:
The forward process is given by:

= \/EtX() + 1— dt 6(..)(757 t) (24)
The estimate of X is:
- 1
Xo= — (Xi + (1 — &) Sp( Xy, t)). 25
0 \/a( t ( t) 9( t )) ( )
Rearranging for e(X, t):
X — VaXo
X t) = ———. 26
6( ty ) m ( )
Substituting X from X 0:
1
€(Xt,t) = Xt \/7 (\/7 \/7 (Xt7 )) . (27)
Expanding:
Xt + (1 — ) Se(Xy,t)
X, t) = X — . 28
6( ty ) t m ( )
Simplifying:
€(Xt,t) = —V 1-— dtS‘g(Xt,t). (29)
Thus, solving for Sp(X¢, t):
E(Xt,t)
Sp( X, t) = ———=. 30
9( t ) m (30)



